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I. Phys. A Math. Gen. 26 (1993) 5133-5143. Rinted in lhe UK 

The physical meaning of the embedded effect in the quantum 
submanifold system 

Shigeki Matsutani 
2-4-11 Sairenji, Niiiama, Ehime, 192 Japan 

Received 3 December 1992. in final form 29 March 1993 

Abstract. In quantum mechanics on a submanifold, it is known that when the submanifold 
has an extrinsic cwatme, an effective potential appears in the ScMdinger equation even if it 
does not curve inhinsicdly. Recently Ikegami el 01 applied tk D i m  quantizafion scheme for a 
conshined system to submamifold physics and found that Lhere is an anomalous correspondence 
between the quanlum and the classical mechanics In this paper, we show the physical meaning 
of the origin of it through the polar regresenuuion and then the results of kegami er a1 are 
nafurally understood. 

1. Introduction 

In elementary particle physics and quantum gravity, there are many studies of quantum 
physics on a manifold (Birrell and Davies 1982), in which the intrinsic curvature plays the 
most important role. Consideration of the extrinsic curvature is sheer nonsense because the 
intrinsic property of the manifold does not depend upon whether it is embedded or not. 
Even after quantization, it is assumed that this remains true because the outer space of the 
universe should not have an effect on the inner space. 

In this decade, the quantum system on a submanifold was studied in condensed matter 
physics. In the quantum submanifold system, the extrinsic curvature is more important than 
the intrinsic one. If a submanifold in R3 has an extrinsic curvature, the curvature sometimes 
makes an attractive potential appear in the Schriidinger equation. This effective potential 
appears even though there is no intrinsic curvature; a torus or a space curve. Hereafter we 
call it the embedded potential. It comes from a geometrical correction at the quantum level 
and has the form 

~ where -P3B is the Weingarten map. It was derived by da Costa (1981) using the operator 
formalism, and by Matsutani (1992% 1993) using the path integral method. In both methods, 
a confinement potential was introduced. Since, in Euclidean space, the quantum physics 
is well defined, one can use conventional quantum mechanics. Taking the squeezed limit 
of the potential, which confines a particle on the submanifold, the embedded potential was 
obtaind. These embedded potentials from both methods agree. 

This effect was applied to a particle on a rod and it was then found that this effect 
is closely related to soliton physics (Matsutani and Tsuru 1991,1992, Matsutani 1992b). 
Furthermore there are many other applications; a curved quantum wire @uclos and 
Exner 1991) and a curved wave guide (Miyagi 1989). 
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Recently Ikegami et a1 (1992) studied the quantum submanifold system using the Dirac 
quantization scheme for a constrained system @irac 1964). After classically constraining 
a particle on the submanifold, they then quantized the system. Then they pointed out that 
there is an anomalous correspondence between the classical and the quantum mechanics in 
the Dirac scheme for the submanifold quantum system. Let q3 be a function of R3 and 
q3 = 0 express a surface in R3. They dealt with it as two different constrained systems. 
First, they made the particle satisfy 4’ = 0 and quantized it (they called this first situation 
D-case). Second, they considered it under the condition 41’ = 0 (they called this second 
case D-case). Due to the requirement that the condition should preserve a consistency for 
the time development, the D-case contains the constraint condition q3 = 0. Hence the 
conditions in the D-case have a symmeoy in the phase space and look natural. Thus in 
elementary particle physics, the D-case is well established while the b is not so well; 
e.g. the D a s e  is studied by Marinov and Terentyev (1979), and Fukutaka and Kashiwa 
(1987) for a sphere in terms of the path integral method and by Ogawa et al (1990) for 
a general submanifold in terms of the original Dirac scheme. Both the D and b-cases 
generate the same result in the classical region. However after one quantizes them, they 
have different embedded potentials; for the D-case 

and for the b-case 

h2 viD = -G(w2((r=3p)2) - $3(tr2(rU3B))2) (1.3) 

where the 6’s are real parameters, which come from the ambiguity in the ordering problem 
in the quantization. It is remarked that the embedded potential in the D-case (1.2) disagrees 
with that of the operator formalism (1.1) for any 51. Ogawa (1992) first pointed out this 
difference between the D-case (1.2) and the operator formalism (1.1). On the other hand, 
the embedded potential in the b a s e  (1.3) is in agreement with the conventional one for 
a physical choice; $2 = 2 and $3 = .I. In other words, the quantization depends upon 
the choice of the constraint conditions and the D-case does not reflect the real physics. 
It looks anomalous, and Ikegami et al indicated the physical meaning of this anomalous 
result. However it is not so clear why the D-case is more natural than the D-case. 

In this paper, by means of the polar representation (Bohm 1952, Dirac 1958, 
Sakurai 1985). we will clarify this phenomenon and reveal the reason why the D-case 
survives under the quantization and expresses physical states. Furthermore, we try to show 
a more intuitive physical meaning of the embedded potential and the relations between the 
path integral method, the operator formalism and the Dirac scheme on the submanifold 
system. 

2. Polar-representation of the Scluirdmger equation 

First of all. we consider the SchrMinger equation on the flat space R’ and express it in 
terms of the Cartesian coordinate @ , x i ) ,  i = 1,2,3 

(2.1) fi2 ij . %a,+ = --a a,ai* + vllr 
2m 
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where. a, := a/at and ai := a/axi. Let us use the polar (Madelung) representation 

W .  f )  = R(x, 0 exp(iS(x, ?)PO (2.2) 

where R and S are real valued functions. Then the Schrtidinger equation (21) becomes 

(2.3) 
1 

2m 
a, R = --[~s~ja,a,s + zsijai~ajsi  

(2.4) 

The first equation (2.3) indicates the continuity equation when we define ji := pajS/m and 
p := R2 

Next we consider the second equation (2.4) (Bohm 1952, D i m  1958, Sakurai 1985). It is 
known that the classical Hamilton-Jacobi equation (CHJE) may be written as (Amold 1989) 

(2.6) 
1 .. a,s, + -si~(aisc)(ajsc) + v = o 
2m 

for the classical Hamiltonian 

1 i j . .  
Hc = -6 PCPJ + v. 2m 

According to the relation between (2.6) and (2.7), ais, corresponds to the classical 
momentum. 

Comparing (2.4) and (2.6), the second equation (2.4) can be regarded as a kind of 
Hamilton-Jacobi equation with the quantum correction 

Let us call the second equation (2.4) the quantum Hamilton-Jacobi equation ( Q m )  and the 
extra term (2.8) the quantum potential (QP). In the QHIE, a$ seems to indicate the quantum 
momentum. When we take the classical limit h -+ 0, the QP appears to vanish and the 
QHJE seems to agree with the CHJE (Dim 1958, Bohm 1952). There, thus, seems to exist a 
classical-quantum correspondence; ais, + ais and V + V + VQ. 

However, it is known that R sometimes contains (x/?i)* and the QP survives in the 
classical limit. In order to simplify the problem, we deal with a one-dimensional system 
for a while. For example, in the harmonic potential case, the QP does not vanish as Ti + 0 
(Song Ling 1992). For the V = 0 situation (free case), it is known that @ = exp(ixp/h) 
and J. = cos(ip/h) satisfy the same equation (24). While the exponent solution has 
the correspondence through the fact that 8,s is just the momentum eigenvalue p and 
the QP vanishes, the cosine solution indicates that a,S 0 and the QP remains as the 
kinetic term in the classical limit. Hence the appearance of the dependence of f r  does not 
reflect the real physical situation. This is natural because the QP contains a second-order 
derivative, i.e. the square of the momentum operator. In order to clarify the problem, let 
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us consider a simpler example; a symmetrical infinite box potential, where V ( x )  = 0 for 
x E (-d, d )  and V ( x )  = VO with V, = 03 forx (-d, d) .  Its solution is @ = cos(ipn/h) 
with the quantized momentum p.. Then as mentioned above, the quantum and classical 
correspondence through the QHIE breaks down. In other words, the QP does not vanish for 
h + 0 and ais = 0. Even for VO c co, it is hue. An intuitive reason why it breaks down is 
that the classical theory is a loc& theory while the quantum theory is a global theory. The 
penetration of the wave function to the outer space of the box (x  6 (-d. d ) )  is a quantum 
effect. (The phase S is suppressed and only R survives there. R indicates a quantum 
effect.) The boundary condition has an effect on the wave function over all the region. 
In other words, the boundary condition breaks the translational invariance and then the 
generator of the invariance (the momentum operator) behaves peculiarly over all the region; 
the correspondence between 8,s and the momentum p breaks down. This phenomenon is 
also found in a periodic boundary problem; e.g. on a topological connected circle S' with 
circumference b r ,  the translational invariance is also modified and the eigenvalue of the 
momentum operator is discretized. Then a& E R while a,S is expressed by an integer. 

Consequently since the difference between the local and the global theories is too crucial 
for a space with a boundary, especially for the bound states, we cannot continue to deal 
intuitively with the correspondence between the CHJE and QHJE there. 

However we can avoid these problems. For example, we could redefine S and extend it 
to the complex valued function with a quantized condition like the WKB method (Bohm 1951, 
Vigier 1989). Another possibility is that we could consider (2.3) and (2.4) only over an 
open space without bound states. 

In this paper, for the sake of simplicity, we will employ the latter method. Then we 
can avoid the boundary value problem. Furthermore, we restrict ourselves to considering 
only the subset of its solutions whose 3,s can be regarded as a momentum; for example in 
the V 0 case, we deal with @ = exp(ip fh) rather than @ = cos(iip/h). We note that 
this restriction is not so rigid since in terms of the linearity of the equation, we can obtain 
the cosine solution by superposing the exponent solutions. Then we can go along with the 
intuitive correspondence between the classical and the quantum mechanics. In other words, 
the origin of the h fluctuation can be regarded as the QP and we can consider 3,s as the 
momentum of the system. Consequently under the restrictions, the QWE can be regarded as 
the deformation of the c m .  

We also note that since we deal with an open base space, we are now looking at a 
scattering problem. 

Next we will show the relation between the path integral and the Qm (Dirac 1958, 
Schulman 1981). It is known that a solution of the CHJE is the action integral of the system 
(Amold 1989) 

On the other hand, using the path integral representation the wave function @ is expressed 
by (Feynman and Hibbs 1965) 

where the 'i' index indicates an initial state and 

Dx exp(iS&]/ii). 

(2. IO) 

(2.1 1) 
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Let us define the effective action Sa by 

Se&, t: xi,  2;) := -%log z. 
It is expressed by 

seff = (S0)PI - iftseat 

where ()pl means 

( ~ o ) p l : =  J ~ x ( t )  Soexp(iSolfi)/Z(x, r;  xi, ti). 

Then $ becomes 
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(2.12) 

(2.13) 

(2.14) 

r 

It i s  known that in the path integral representation, the quantum and statistical mechanics 
have a correspondence if we interpret ifi as the absolute temperature and vice versa (Feynman 
and Hibbs 1965). According to this analogy, it t u m s  out that Sent seems to play a similar role 
to the enlmpy. In other words in the path integral representation of statistical physics,’the 
entropy implies the volume of the allowed regions in the same way as Sa: in the classical 
limit li + 0, corresponding to the low tempemture limit, the physically allowed region is 
that where the exponent So/h is minimum. Then the path is fixed and the volume of it, 
or Sat, vanishes. On the other hand, in the other limit li --f CO which corresponds to the 
high temperature limit, So/h + 0 and the volume of the region or Sent becomes sufficiently 
large. Accordingly Sent indicates the quantum fluctuation and prefers the random state. 

If we define SR := log R 

r/r = eiS/h+SR (2.16) 

Roughly speaking, Sat and SR behave similarly in the quantum mechanics, if we 
approximate S by (SO)PI. Actually, the QP (2.8). which indicates the quantum effect in 
the QHJE, consists of only SR. 

3. Submanifold quantum mechanics 

In this section, we will confine a particle onto the two-dimensional (2D) surface X! embedded 
in R3 (da Costa 1981, Matsutani 1992a, 1993). In order to keep the intuitive correspondence 
between the QHJE and the CHJE, we assume that X! is open and homeomorphic to R2 and 
towards infinity, it approaches flat. First of all, we will define the geometry of the system we 
consider. Let the middle part of the Greek alphabet used as indices (4”. q”, . . .) indicate the 
curved system: p = I ,  2.3. The relation between the Cartesian and the general coordinates 
is given through the dreibein 

~ ~ 

(3.1) ._ .- awni 
where a,, := 8/34,,. The metric is written as 

g,,, := 8;jei,eJu. (3.2) 
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Let the first and the second coordinates indicate the position attached on I:. The n m a l  unit 
vector of I: is denoted by e3. The confinement potential V is given along I: and constrains 
the particle to be on 'c. Let us assume that V has the form, VZf(q3) := &mfd2(q3)2 for 
large o, where q3 is the normal coordinate of E. As we mentioned in the introduction, 
43 = 0 indicates the surface I:. Hence we consider only the vicinity of C. 

Because we wish the 3D metric g, (3.2) around C to be expressed by the variables 
of C, we will consider the geometzy in the vicinity of C. Let a position on C be denoted 
by r(9I, 9'). We can express a point x := ( X I ,  xz ,  x 3 )  around in terms of the curved 
system 

~ ( 9 ' )  = rfq') + q 3 4 .  (3.3 ) 

The'start of the Greek alphabet used as indices (q",qfi,. . .) span from one to two. We 
define the zweibeii along 'c as b', := ari/aqu and the covariant derivative De as 
D,X := a,X - &X, 9)4 for a vector X. Here (, ) denotes the canonical inner product. 
The 2~ Christoffel symbol is thus defined as D&fi = FYp,by. The second fundamental form 
(Guggenheimer 1963) defined by r3,, := (e3, a&) is expressed by 

r3fia = -rY3m?~8 (3.4 ) 

where qap := Gi,bi,b'fi and -ryp3 := (by. &b8) is the Weingarten map. Therefore we can 
express e',(= ax'/aq') around I: in terms of b', 

(3.5) e',=b',+q ' 3 B b i  r %  #. 

The 3D metric g"" around E can be found using (3.2) and g := det(g,,) becomes 

g = rK C1I2 := (1 +trz(ra3fi)q3 +det~(r '~~)(q~) ' ) .  (3.6) 

Here trZ and der2 are the 2D trace and determinant. These values are known as the mean 
and Gaussian curvatures on 'c (Guggenheimer 1963). 

As we finish the geometrical preliminary, we will consider the quantum mechanics 
around C. In terms of the curved coordinate system, the Schradinger equation becomes 

with the confinement potential V 2 ( q 3 )  := fmo2(q3)2. Though along the normal direction 
the system is a bound state, along 'c it is an open space. Hence we can continue to deal 
with the polar representation formally. In terms of the polar representation, the SchrMnger 
equation becomes 

1 
2m 

atR = --[R g - 1/2a,gfiyg112a,s + 2 g ~ Y a , ~ a , ~ ~  (3.8) 

(3.9) 

The first equation also indicates the continuity equation if we define j @  := g f l Y p a v S / m  and 
p = R' (Landau and Lifshitz 1962) 

(3.10) 
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It is known that coordinate transformations in quantum mechanics needs some subtle 
treatment (Sakita 1985, Dm 1958). Since the probability is expressed by (@11@2) := 
Jd3x @r(x) . @2(x) in the Cartesian coordinate, it becomes ($11$2) = Jd3q g1lZ$;(q) . 
@z(q) in the curved coordinate system. In general, the Jacobian impedes the Hermiticity of 
the natural differential operator. It is equivalent to the fact that a, is the Killing vector in 
R3 while in general a, is not. 

In our problem, we wish to separate the equation along the normal direction from the 
Schrdnger equation (3.7). Then the normal dynamics will be expressed by 

(3.11) 

However due to the Jacobian, -283 does not agree with the momentum operator $3. In 
other words, after confinement we expect that the probability density along should be 
(6; . h ) ( q * ,  q2) := 1d(q3) (V .q5)(q1, q2,  q3). In order to get the probability density and 
for the derivative operator to agree with the momentum operator, we will deform the Hilbert 
space and we define a new wave function (da Costa 1981) 

6 := <'I4@ and r = f1 l4R.  (3.12) 

Then the momentum operator $3 is identified with -233. 
The continuity equation (3.10), thus becomes 

where := q1/2r2. On the other hand, the QHIE (3.9) becomes 

(3.13) 

(3.14) 

Let us consider the effect on V::? After o + CO, we can separate the equations to 
normal and horizontal parts (da Costa 1981). As we know that the solution of the harmonic 
potential for the lowest state, SN = f i w t / 2  and r~ = (mo/nfi)1/4exp(-mw(q3)2/2fi)  when 
we assume that S is written as S = S,(t, q') + SN(C. q3), and r = rm(t, q " ) r ~ ( q ~ ) .  The 
QWE along the normal direction becomes 

(3.15) 

Because a 3 s ~  = 0 and rN contains a (q3/h)' term, the intuitive correspondence between 
the CHIE and the QHIE is broken along the normal direction. 

Next we consider the quantum equation along E. By integrating (3.13) over 43. we 
obtain the ZD ordinary continuity equation 

(3.16) 
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where pzo := (r&. The QHJE along the surface becomes 

(3.17) 

We note that (3.17) is the ordinary ZD curved QHJE except for the last term. Thus the last 
term is regarded as an embedded effect (da Costa 1981), i.e. the embedded potential 

f i x  
2m 

- -((;tr2(ra3fi))2 - det2(rm3+d) = 0. 

(3.18) 

This is identified with (1.1). Furthermore. we note that (3.18) vanishes for a 20 sphere on 
account of its symmetry. 

is open and we deal with a scattering problem, the 
intuitive correspondence between the cl&sical and the quantum mechanics through the QHJE 
is guaranteed. Thus, we can go on employing this picture. 

It is noticeable that the embedded potential comes from the QP. In other words, its comes 
through S, = log R which corresponds to the measure part of the path integral. It is known 
that in the path integral method, the embedded potential comes from the measure and the 
ordering (Matsutani 1992a). Our result is natural and supports the agreement between the 
path integral method and the operator formalism. 

It is worth while noting that the QP in (3.14) depends on a,, &(= ifis), qR. and q3  
while 3,s can be regarded as the momentum along Z and 3,s = 0. In the QHJE, a3S is 
apparently the momentum along the normal direction p3. However it vanishes and has no 
effect on the system. On the other hand, the form of the QP, which contains 33(= i53) and 
q3, fixes the embedded potential (3.18). In other words, q3 and a,(= i53) survives in the 
QP and they determine the functional form of the embedded potential (3.18). Then q3 is 
regarded as a parameter of the system. After we fix its form, we make q3 vanish. 

The existence of the asymmetry in &S and p3 agrees with the behaviour in the Dirac 
quantization in the submanifold quantum system. As we mentioned in the introduction, 
using the Dirac quantization, Ikegami et a1 (1992) studied the two constraint cases q3 = 0 
(D-case) and 4’ = 0 (b-case). The Dcase contains the condition 4r3 to ensure consistency. 
According to Dirac’s original work (1964), for a constmint system we will introduce the 
‘Dirac’ bracket [, ]DB instead of the Poisson bracket [ , ]pB at the classical level. When 
we quantize the system, we replace the classical D i  bracket with the commutator, 
[, ]DB + 1, ]/ii. In the D-case, after some calculations, one obtains the equations 4’ = 0, 
4’ = 0 and a3SC = p3 = 0 at the classical Hamiltonian level. Hence these variables are 
excluded from the system even at the classical level. After quantizing it, one obtains an 
embedded potential (1.2) but it disagrees with ours (3.18). On the other hand, the bcase, 
since its Hamiltonian does not include the normal dynamics, has a3SC = 0. However the 
normal variables p3 and q3 have a physical meaning at the classical level. In other words, 
we can set their non-trivial Dirac brackets; [q3,  p 3 1 ~ B  = 1. Hence the correspondence 
between a3Sc and p3 is broken there. After quantization, the algebra generated by [, ] / i i  
contains [G3, f i31 = ih and then one also obtains its embedded potential (1.3). In the 
deformation from the classical to the quantum mechanics, there is the ‘ordering’ problem 
and some ambiguity. In their paper, they chose the ‘physical’ ordering under which the 
normal kinetic operator consists of the bilinear form of the Hermite normal momentum 

A2 vg = -z;;;((+2(re3s))2 - det2(P3s)). 

We recall that since the surface 
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operator 6,; & = 2 and $3 = 1 in (1.3). Then the embedded potential (1.3) is in agreement 
with ours (3.18). 

We note that in classical submanifold physics, the CHJE of our system and the Dirac 
bracket have an equivalent physical meaning. To see this is easy. We employ the same 
confinement potential V c z .  In the classical theory, the dynamics of a particle constrained 
on the surface Z is obtained from the c m  which is (3.9) without the last QP term. Aftei 
a confinement limit, the dynamics along the normal direction is frozen; q3 = 0, q3 = 0 
and S,N = 0. Then we obtain the 2D CHJE that is (3.17) without the 2D QP term or the 
embedded potential (3.18). The 2~ CHIE indicates the classical submanifold physics and 
corresponds to the Hamiltonian which is obtained by means of the classical Dirac constraint 
scheme (Ikegami et a1 1992). Furthermore both the QHJE and the Dirac quantization give the 
method of deformation from the classical mechanics to the quantum mechanics respectively. 
In our argument, we formally attach the QP to the CHIE with the continuity equation. In the 
Dirac scheme, we replace 1, loB + [ , I/%. Then in the Q m ,  8,s = 0 but the added QP 
contains q3 and a,(= i&) while in the b-case %S, = 0 but q3 and p3 remain as dynamic 
variables. Thus we conclude that the asymmetry in &S and p3 appearing in both methods 
can be interpreted as the same physical phenomenon. In the QHIE, the reason why 33s 
vanishes is that the normal direction is the bound state. Accordingly, the constraint system 
should be regarded as a limit of the bound system. Hence the asymmetry in the Dirac 
scheme is very natural. Consequently in the Dirac scheme, we must choose the D-case 
rather than the D-case. In other words, in the D-case, the condition q3 = 0 is too strict to 
express the quantum fluctuation or the QP. 

It is also worth while noting that our argument does not depend upon the exact form 
of the confinement potential Vc% as long as the potential is independent of position on 
the surface 'c. As we mentioned in the section 2, the bound state breaks the natural 
correspondence between the CHJE and the QHIE. In the confinement limit, a& along 
the normal direction becomes meaningless and only the penetration Q.J is dominant. This 
phenomenon does not depend on the exact form of the confinement potential. For example, 
if we employ a box potential as a confinement potential and make its width d vanish, we 
obtain (3.18). For the other confinement potentials, it is also clear that a 3 S ~  = 0 and q3 is 
regarded as a parameter to determine the embedded potential (3.18). It turns out that we 
then obtain the Same 2D dynamics (3.16H3.18). 

~ 

~ ~ 

4. Conclusion 

In the polar representation, the Schradinger equation is related to classical mechanics or, in 
some situations, the c m .  Hence, in our argument, the origin of the embedded potential in 
the submanifold quantum mechanics is more evident than in the ordinary methods. 

By utilizing this property, we have studied the anomalous result on the Dirac conshaint 
quantization in a submanifold; the D-case and the b-case. The Dirac scheme indicates how 
the classical mechanics is deformed to the quantum mechanics. On the other hand, in the 
QHJE, the QP term indicates the deformation from the m to the quantum mechanics. Both 
methods must be equivalent. Accordingly in order to clarify why the b-case is more natural 
than the D-case, these cases were compared with the QHJE. In the submanifold physics, we 
found that though the c m  does not contain the normal dynamics, the QP includes it and 
indicates the quantum fluctuation along the normal direction: it gives the embeddedpotential 
(3.18). In the b-case, the classical Hamiltonian does not contain the normal dynamics, but 
the normal variables are maintained through the Dirac bracket. Then quantizing the system, 
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one has the true embedded potential (1.3). Hence the structure in the &case agrees with 
that of the QHIE method. On the other hand, in the Dcase, the normal dynamics are 
excluded totally and it generates an unphysical embedded potential (1.2). As Ikegami er ai 
remarked, the anomalous result in the D i m  scheme is inevitable. The situation in the QHIE 
method shows why the b-case reflects the physics. Roughly speaking, in the b-case, the 
condition q3 (x &Se = 0 restricts the Hamiltonian or the CHJE, hut does not influence the 
QP explicitly. It expresses the physical fluchntion. However in the D-case, the conditions 
q' = 0 and q3 (x a3Sc = 0, are too shict to express the QP exactly. 

We have shown that the intuitive correspondence between the QHJE and the CWE 
disappears for the bound state, and the submanifold quantum system should be regarded 
as a kind of bound system. The correspondence between the classical and the quantum 
case is ill defined there. Thus we conclude that the difference between the D-case and 
the D-case comes from the ill definition Since the QP plays a more important role there 
than ais, the condition which cannot represent the QP is fatal. In other words, on the 
deformation from the local to the global theory, the QP adjusts the difference and generates 
the quantum fluctuation. However the condition q3 = 0 is global in the local (classical) 
theory. Hence it prevents its adjustment in the deformation. Thus the D-case is not physical 
at all. Consequently in the Dirac scheme, we must choose the local condition q3 = 0. 

Furthermore through the polar representation, we have commented on the origins of the 
embedded potential (3.18) in the path integral, the operator method and the Dirac scheme 
respectively. The polar representation is, thus, qualiied for an overview of the relations 
between the path integral method, the operator formalism and the Dirac scheme. 

We will comment on the boundary problem Though I did not deal with he compact 
submanifold, we can use (3.18) there (da Costa 1981). We must also consider the discretized 
condition there. 

Nex't we mention a relevant optical problem. In optics it is known that a similar 
effect on a submanifold is found for a bent optical waveguide (Miyagi 1989). It is natural 
because there is an analogy between the quantum mechanics and wave-optics (Guillemin 
and Stemberg 1984). Our consideration can be applied to the optical problem. 

Finally we comment on an open problem. In elementary particle physics, it is known 
that there are many studies of the path integral method for the Dirac constraint scheme 
(Senjanovic 1976, Bataliin and Fradkin 1987). There are some applications of it to the 
submanifold system but they are just the D-case (Marinov and Terentyev 1979, Fukutaka 
and Kashiwa 1987). It is expected that there also appears an anomalous correspondence 
between the D-case and the D-case. However, so far as I know, nobody has confirmed it. 
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